
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

Journal of Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsm20

Decoupling visualisation for better DEVS-based
simulation applications

Bruno St-Aubin & G. A. Wainer

To cite this article: Bruno St-Aubin & G. A. Wainer (12 Oct 2023): Decoupling
visualisation for better DEVS-based simulation applications, Journal of Simulation, DOI:
10.1080/17477778.2023.2265872

To link to this article: https://doi.org/10.1080/17477778.2023.2265872

Published online: 12 Oct 2023.

Submit your article to this journal

Article views: 40

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20
https://www.tandfonline.com/loi/tjsm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2023.2265872
https://doi.org/10.1080/17477778.2023.2265872
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2023.2265872
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2023.2265872
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2023.2265872&domain=pdf&date_stamp=12 Oct 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2023.2265872&domain=pdf&date_stamp=12 Oct 2023

RESEARCH ARTICLE

Decoupling visualisation for better DEVS-based simulation applications
Bruno St-Aubin and G. A. Wainer

Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

ABSTRACT
Simulation visualisation is an effective way of understanding and communicating complex
systems and processes. Among other advantages, it increases model transparency and intellig-
ibility for all categories of users including non-experts, and it can be used by modellers as a tool
to debug models in development. However, simulation visualisation is often tightly coupled to
specific simulators, and, therefore, there is no way to reuse visualisation tools efficiently. Here,
we present a specification that can be used to decouple visualisation engines from simulators.
The specification also considers storage optimisation to support web-based simulation appli-
cations. We also present an implementation that supports the web-based representation and
animation of outputs issued from simulators based on the discrete event system specification
(DEVS) and Petri Nets.

ARTICLE HISTORY
Received 23 May 2022
Accepted 27 September 2023

KEYWORDS
Decoupled visualisation;
visualisation interoperability;
simulation environment

Introduction

Visualisation is an effective way of understanding and
communicating complex systems and processes. It
increases intelligibility and enhances the tractability
of data, processes, or theories for all categories of
users, from the layperson to the scientist, expert in
the field. The usefulness of visualisation for simulation
has been recognised in the field since its early years
(Hurrion, 1978), it still generally takes second stage to
the advancement of theory, research on performance
and application domain-specific model development.
In Collins et al. (2015), the authors argue that research
mostly focuses on the mechanics of simulation and
that, since visualisation does not directly affect the
simulation, it is seen as a secondary consideration.
Simulation experts typically rely on ad hoc visualisa-
tion mechanisms that are specifically built for and
tailored to their application domain. For example,
modellers will write data processing and visualisation
scripts to transform their simulation results into chart-
based analytics.

The situation is similar for simulators based on
formal methodologies that can be employed in
diverse fields of applications. In fact, their visualisa-
tion capabilities, when available, tend to be even
more limited than those of domain-specific simula-
tors. This could be because these simulators are
mostly issued from academic contexts where
resources are more limited. Indeed, significant
resources and efforts are required to develop com-
prehensive visualisation, and there is a certain lack
of interest from the research community regarding
this topic (Collins et al., 2015). For example, CD++

(Belloli et al., 2019; Wainer, 2002), DEVSJAVA
(Sarjoughian & Zeigler, 1998), and ADEVS
(Nutaro, 2023) are simulators that can be used to
simulate a range of systems using the Discrete-Event
Systems Specification formalism (DEVS) (Zeigler
et al., 2000) but they only offer basic visualisation
and analysis capabilities. Simulation software based
on non-DEVS formalisms fare similarly. CPNTools,
for example, is a Petri Nets simulation software that
offers visualisation capability solely based on dia-
gram representations of models (Westergaard &
Verbeek, 2018). However, it should be noted that
some long-standing simulators based on formal
methods and with larger user communities such as
OpenModelica (Modelica Association, 2019) offer
more extensive capabilities (2D charts, 3D visualisa-
tion, and additional options to display analytical
charts) (Eriksson et al., 2008; Höger et al., 2012).
Commercially available simulation software also
tends to fare much better regarding visualisation
capabilities. However, their visualisation capabilities
generally rely on log files that are either hidden to
the user or use proprietary formats. Results cannot
be easily imported into other visualisation tools (St-
Aubin et al., 2023).

Reusable visualisation tools could fill that gap.
A once built visualisation application, compatible
with many simulators, and adaptable to different
scenarios, would benefit simulation practitioners
without requiring them to invest the resources
required in building their own dedicated tool.
There are additional advantages on top of improv-
ing development costs. A well-made, verified, and

CONTACT Bruno St-Aubin gwainer@sce.carleton.ca Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By
Drive, Ottawa, Canada

JOURNAL OF SIMULATION
https://doi.org/10.1080/17477778.2023.2265872

© 2023 The Operational Research Society

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2023.2265872&domain=pdf&date_stamp=2023-10-12

reusable visualisation tool increases transparency
in the dissemination of simulation results. The
shortcomings of a model cannot be hidden
through visualisation since the reusable tool has
been used in other contexts and its reconstruction
of the simulation trace has been verified to be
accurate. Easily accessible visualisation can also
serve as a debugging tool for modellers and there-
fore supports the modelling process. Before reusa-
bility for visualisation tools can be achieved, there
are several obstacles that must be addressed:

(1) Issues caused by ad-hoc or user-defined
formats for simulation results. In some
cases, the logging format is established by the
modellers themselves, leaving even less poten-
tial for reusability or interoperability. Similarly,
the use of ad-hoc solutions (for instance,
JavaScript Object Notation – JSON – combined
with Jupyter notebooks or Python scripts) helps
with interoperability at the syntactic level, but
the semantics of the models which cannot be
easily dealt with, reducing the chances for inter-
operability and reuse.

(2) Inexistent or inaccessible simulation logs.
In certain cases, the simulation software does
not expose simulation results or does so in
a generic format that does not follow a clear
specification. This can be the case in well-
established commercial tools that support the
complete simulation lifecycle. An effect of this
is decreased transparency because results can-
not be easily loaded in other tools, and the
consequence is the difficulty for developers to
use the best tools available, as well as making
end users rely exclusively on a single software
to study their models through visualisation or
analysis.

(3) The large volume of simulation logs. Log
formats can be verbose and contain redundant
information, leading to needlessly voluminous
files. For web-based applications, this can
quickly become detrimental to user experience
since a browser has limited resources and
because these artefacts often need to transit
through a network.

(4) Lack of interoperability for simulation logs.
Simulators rely on specific log formats or user-
defined formats to store results. A common
format would allow seamless comparison
between results of multiple simulators, regard-
less of the formalism they use. This can be
useful for a user that must translate models
from one formalism to another. Users should
be able to compare results of the original and
translated simulations quickly, statistically, and
exactly.

The goal of this research is to define a specification
that can be used to store simulation results, structure
them, and decouple them from the simulator. The
specification improves the organisation of the simu-
lation results and the model structure information
that is required to interpret such results using sys-
tematic processing mechanisms for visualisation.
Normally, visualisations are specifically tailored for
use cases and need simulation results to be for-
matted. The contribution of the specification is to
improve reuse across multiple domains of applica-
tions and simulation scenarios. The main idea is to
construct a metadata specification to save all the
information needed to reconstruct a simulation
trace and support the user in interpreting the
model. The specification preserves the components
of a simulation model, which involves translating the
structural parts of a simulation model into an easy-
to-use data structure that can be conveniently
manipulated by an application. The specification is
focused on the work of the simulation and developer
experts and can improve the end user experience.
The specification retains a certain level of readability
so that it remains approachable by non-simulation
experts, which facilitates the development of applica-
tions that are decoupled from simulators. The goal is
to achieve a balance between completeness and con-
venience for developers.

Metadata specifications for simulation results are
uncommon and, to the best of our knowledge, always
proposed in the context of specific application
domains (for example, Grunzke et al., 2014). The
specification we propose in this research is the first
attempt at a generic metadata specification for simula-
tion results in the field. The proposed metadata speci-
fication is based on the formal aspects of the Discrete
Event System Specification (DEVS) but can support
other variants of DEVS as well as other non-DEVS
formalisms. We have successfully used it to decouple
visualisation for many DEVS simulators as well as
a Petri Net simulator as a proof of concept. Another
major contribution is the introduction of a method to
leverage the specification to visually reconstruct simu-
lation traces for web-based simulation applications.
To show the usefulness of the proposed specification
and metadata, we developed three different web-based
visualisation engine prototypes compatible with var-
ious simulators that are presented as case studies.

This paper is organised as follows. Section 2 presents
an overview of the current state of visualisation appli-
cations for simulation software. Section 3 details the
specification we designed to store simulation results
and considerations for its implementation in a web-
based environment. Section 4 presents an implementa-
tion of a prototype DEVS WebViewer, a web applica-
tion to visualise simulation results. We conclude by
reviewing the work and the next steps for this research.

2 B. ST-AUBIN AND G. A. WAINER

Background

The bulk of research in Modeling and Simulation
(M&S) focuses on improving the performance of
simulators, developing new simulation formalisms,
improving modelling techniques or developing mod-
els for specific scenarios (Collins et al., 2015).
A disproportionately small amount of research is con-
ducted on the steps executed after a successful simula-
tion run and the role of visualisation in simulation,
although most people, except for simulation develo-
pers, will only see a simulation through its visualisa-
tion (Knowles Ball & Collins, 2012).

Over the past decade, panels of prominent
researchers have recurrently identified challenges in
modelling and simulation. In Taylor et al. (2013),
Loper identifies the role of M&S in the systems engi-
neering lifecycle as a challenge. She notes that intui-
tive, multi-usage, visual support would provide
a common collaboration and decision-making plat-
form for the many actors that take part in an engineer-
ing process. In Taylor et al. (2015) and Taylor et al.
(2013), Yilmaz noted that the reproducibility of M&S
research is a challenge: most models are never inde-
pendently replicated by anyone but the original devel-
oper. Reusable visualisation and analysis tools can
help modellers confirm that reproduced models
behave as intended. Zander and Mosterman note
that the M&S field should capitalise on the fact that
citizen developers are increasingly proficient with
technology to provide a wider offering of online plat-
forms, mobile applications, etc. A specification for
simulation results is a first step towards reusable
APIs that citizen developers can use to build web
simulation applications.

Visualization and analysis in simulation

Most simulation visualisation research is domain-
specific and corollary to the development of simula-
tion models, analytical methods, case studies, etc. It is
rarely the main topic in domain-specific research pro-
jects. Visualisations and analyses are prepared to
extract and convey meaning from simulation traces.
Healthcare research is one field where simulation
visualisation is commonplace. For example, the
CLINSim discrete event simulator and its associated
visualisation platform are used to study queues in
hospitals (Kuljis et al., 2001). This tool was used to
reduce wait times in clinics by allowing non-
simulation experts, doctors, and nurses, to understand
the impact of their decisions on wait times. The
authors note that implementation of visualisation
was costly. In Ben-Tovim et al. (2016), the authors
introduce a discrete event simulation-based tool for
hospital patient flow management with an emphasis
on its visualisation capabilities. It relies on

a conceptual representation, adapted to real-world
hospitals, to visualise patient pathways through differ-
ent facilities (surgical, emergency, medicine, etc.)

Biology, ecology, and forestry are other fields where
rich domain-specific simulation visualisations have
been developed. CAPSIS, for example, is an open-
source software designed to model and simulate forest
growth modelling and yield (Dufour-Kowalski et al.,
2012). A graphic user interface allows forest managers
to build models considering parameters such as forest
area, climate zones, tree species, growth rates, mortal-
ity, etc. Simulation traces can be rendered in many
ways: analytical charts, 2D or 3D spatial representa-
tions. The visualisation elements in CAPSIS are tai-
lored to the forestry domain; they mostly consist of
conceptual representations of trees. In Zoellner et al.
(2018), researchers present a simulation and visualisa-
tion framework to follow microbial contamination of
produce across supply chains. The framework relies
on differential equations specific to the domain of
microbial contamination. The tool does not visually
represent supply chains rather, it provides a series of
analytical features to users such as line charts, bar
charts, heatmaps, etc. Domain-specific visualisation
methods are used in many other fields: physics
(Stukowski, 2010; Sand et al., 2011), crowd modelling
(Al-Habashna & Wainer, 2016; Van Schyndel et al.,
2016), construction (Han et al., 2012), marine logistics
(Blindheim & Johansen, 2022; Zhao et al., 2019),
building engineering (Chen et al., 2017; Hamza &
DeWilde, 2014), etc.

In all cases mentioned above, visualisations are
specifically tailored for the use case or rely on third
party, domain-specific software. This requires that
simulation results be formatted according to the for-
mat expected by the visualisation or that the visualisa-
tion tool be coded in such a way that it can handle the
simulation results as they are output. This leads to
visualisation engines that are tightly coupled to simu-
lators and difficult to reuse across multiple domains of
applications or in different simulation scenarios. To
decouple the simulator from the visualisation engine,
it is important to define a specification for log files that
will contain all the elements required to visualise the
model and provide sufficient information for users to
understand it.

Research on the structure and organisation of
simulation log files is sparse. In Hao et al. (2016),
researchers propose an extensible markup language
(XML) specification to store simulation and game
results as well as a Python application programming
interface (API) to read it. They also identify typical
issues caused by improvised simulation log files.
Parsing unstructured log files is tedious, difficult, and
error prone; the number of exceptions that must be
handled when processing the log file is generally
unpredictable. This specification is intended to

JOURNAL OF SIMULATION 3

support and facilitate the analysis of log files in specific
gaming and simulation scenarios. For example, it con-
siders n-gram event sequence matching in both the
specification and analysis API. It is not meant to sup-
port generic simulation; it lacks flexibility and details
required to represent complex simulation models: it is
tailored to games than simulations.

Visualisation capabilities for simulations can be
categorised in different ways. In Vernon-Bido et al.
(2015), four main types of visualisations are identified:
concept and diagram visualisation which relies on
conceptual models and flowcharts, quantitative visua-
lisation which uses analytical charts and graphs, pat-
tern and flow visualisation that focuses on interaction
between elements, and seek and find visualisation
which allows users to manipulate data as the simula-
tion occurs. The specification supports all but the last
category of visualisation since it is primarily meant for
post-simulation visualisation. The last category is
more dependent on the simulator being interactive;
it must be able to let the user modify the simulation
experiment as it is being executed. The specification
would likely be compatible with this type of visualisa-
tion, but we did not test it on an interactive simulator.

The specification we propose in this paper is for
simulations based on DEVS, PDEVS, and other var-
iants of DEVS. With regard to that formalism, visua-
lisation capabilities can be further categorised. In Van
Tendeloo & Vangheluwe (2017), the authors focus on
evaluating existing DEVS simulation tools and review
seven academic tools and a single proprietary, com-
mercial tool. Although visualisation is only one of the
seven aspects they evaluate, they still identify five clear
stages of visualisation for discrete event-based
simulators:

(1) Identification of models and when they are
triggered.

(2) Visualisation of a model’s state at any given
time.

(3) Visualisation of messages exchanged between
models.

(4) Identification of a model’s internal and external
transitions.

(5) Visualisation of the sequence of exchanged
messages.

Pitfalls of visualization and analysis for simulation

In Collins et al. (2015), the authors discuss the seem-
ing opposition between the fact that visualisation is
a secondary concern for modellers while at the same
time often being the only part of a simulation that
decision-makers use. Therefore, visualisation can dis-
proportionately influence the understanding of the
system and any decision that results from it. They
identify four ways in which visualisation can

potentially mislead the interpretation of simulation
results: the inclusion of extraneous elements, of base-
less endogenous elements (visual fluff), inaccurate
interpretation (due to a disconnect between represen-
tation and model), and accessibility issues (colour
blindness or other impairments). In Banks & Chwif
(2011), the authors review numerous aspects of mod-
elling and simulation and discuss data collection,
model building, verification and validation, analysis,
etc. They also suggest that a visualisation should pro-
vide a general view of the model and be organised
according to several well-defined criteria. Like
Roman (2005), they also warn readers to not get con-
fused by fancy graphics that may be misleading. They
note that visualisation can support the validation of
a model, increase the acceptance of a model by deci-
sion-makers and increase sales.

The lack of commonly adopted standards for simu-
lation outputs contributes to the difficulty in achieving
interoperable visualisation of simulation results. This
has been identified in Shao et al. (2015) where authors
cite the size of output data, their heterogeneity, and
the fact that they are tightly coupled to the simulation
tool as factors that limit their interoperability. The
authors of Li et al. (2018) also note that data reduction
is increasingly important for simulation visualisation
since “the ability to generate and observe data is going
up faster than the ability to store data”. Since there is
no commonly adopted standard for logging messages
that are output over the course of a simulation, there is
also no standard way of consuming them in
a visualisation. Analysts must rely on custom scripts
to read log files into their preferred tool and program-
ming language. Typical data science tools such as
Jupyter or Tableau allow users to write scripts that
convert complex, verbose, sometimes redundant log
files into a format that can be plotted more easily as
analytical charts or visual reconstructions of their
simulation. In a context where data science is omni-
present, where citizen developers dispose of increas-
ingly diverse tools to consume data, it makes sense
that a clear specification to archive simulation results
would facilitate post-simulation visualisation and ana-
lysis. In addition, increasingly complex simulation
models lead to simulation outputs that grow in volume
considerably, making it important to consider the
optimisation of the size of the artefacts to consider
limits of web-based software and for storage in
general.

When authors discuss pitfalls of simulation visua-
lisation, they rarely offer tools to alleviate or avoid
them, the implication being that the burden is on the
software developer. A common specification for simu-
lation outputs is an opportunity to address some of
these pitfalls. A well-known and well-documented
specification provides a way to decouple visualisation
from the simulator. This makes it possible for different

4 B. ST-AUBIN AND G. A. WAINER

developers to build dedicated visualisation platforms
that are independent from a simulator. Independent
visualisation platforms would be agnostic to the limits
of a model or a simulator and, therefore, would lessen
the potential for a modeller to compensate their short-
comings either intentionally or unintentionally. This
is a way to increase transparency in the presentation of
simulation results and, therefore, avoid some pitfalls
identified previously. For accessibility issues, which
can be expensive to address in software development,
reusing a single visualisation platform previously eval-
uated for accessibility could reduce costs associated
with the development of an ad hoc, accessible visuali-
sation tool. These aspects are discussed in the follow-
ing sections, where we introduce a specification to
support web-based visualisation of simulation results
with a focus on platforms that use DEVS, PDEVS, and
other variants of the DEVS formalism.

The DEVS formalism

DEVS (Discrete EVent Systems Specification) (Zeigler
et al., 2000) is a formalism to describe systems whose
states change either upon the reception of an input
event or due to the expiration of a time delay. Unlike
the discrete-time simulation approach, DEVS uses
a continuous time base and allows for asynchronous
model execution, improving the efficiency of the
simulation without losing accuracy. Based on general
dynamic systems theory, DEVS provides a sound M&S
framework to define hierarchical discrete-event mod-
els in a modular way, where a system is described as
a composition of behavioural (atomic) and structural
(coupled) components. An atomic model is defined as
follows:

M ¼ <X; S;Y; δint; δext; λ; ta >

where X is the input events set, S is the state set, Y is
the output events set, δint is the internal transition
function, δext is the external transition function, λ is
the output function, and ta is the time advance func-
tion. Figure 1 shows states and variables in DEVS
models.

As shown in Figure 1, the semantics of DEVS
models are as follows. Each atomic model has input

(X) and output (Y) ports to communicate with other
models. Every state (S) in the model is associated with
a time advance (ta) function, which determines the
duration of the state. Once the time assigned to the
state is consumed, an internal transition is triggered.
At that moment, the model execution results are
spread through the model’s output ports by activating
an output function (λ). Then, an internal transition
function (δint) is triggered, producing a local state
change. Input external events are collected in the
input ports. An external transition function (δext) spe-
cifies how to react to those inputs. A coupled model
groups several DEVS components into a compound
model that can be regarded, due to the closure prop-
erty, as a new DEVS model. This allows hierarchical
model construction. When external events are
received, the coupled model must redirect the inputs
to one or more components. Similarly, when
a component produces an output, it may have to
map it to another component, or as an output of the
coupled model itself.

The simulation is executed in a message-driven
fashion. CD++ (López & Wainer, 2004; Wainer,
2002) and Cadmium (Belloli et al., 2019) are two
open-source environments that support both standa-
lone and parallel/distributed simulation of DEVS
models. The environments provide two major frame-
works: a modelling framework that allows users to
define the behaviour of atomic and coupled models
using a built-in graph-based specification language or
C++; and a simulation framework that creates an
executive entity for each component in the model
hierarchy to carry out the simulation in line with the
formalisms. CD++ messages fall into two categories:
content messages include the external message (X)
and output message (Y) that encode the actual data
transmitted between the models, while control mes-
sages include the initialisation message (I), collect
message (@), internal message (*), and done message
(D) that are used to synchronise the simulation.
During the simulation, all messages exchanged
between the models are recorded in log files. Log
files for DEVS simulators exhibit non-negligible dif-
ferences and a common specification would simplify
and clarify the process of loading the results in mem-
ory for the visualisation software.

The two examples in the figures below illustrate this
issue through log file excerpts for DEVS models in CD
++ (Figure 2) and Cadmium (Figure 3). Figure 2
shows that, for CD++, the log files consist of the
different messages discussed above stored in a text
file. Each line starts with “Message” and its type fol-
lowed by the current simulation time. The last part of
the message includes the simulation source and desti-
nation (from – to), and their corresponding internal
code, specified by a unique integer number. In the case
of output messages (Message Y), we also include the Figure 1. DEVS semantics.

JOURNAL OF SIMULATION 5

port name through which the output is transmitted (in
the figure, out2) and a value (in this case, 1.000).
Similarly, the input messages record the port used, as
well as the value of the input received. Finally, the
Done (D) messages include the time to the next sched-
uled internal transition for the model (in this case,
10:000 s).

For Cadmium, the log is a text file that shows all the
message bags generated by the atomic models every
time the simulator collects the outputs. At simulated
time 2 min 40 s, input_reader generates an output
message {16 0} that is transmitted through the output
port out (iestream_input_defs<Message_t>::out:),
which is retransmitted by the coupled subnet1 at 2
min 43 s. This coupled model uses the output port out
of the coupled model subnet1.

Supporting web-based visualisation of DEVS
simulation

As noted previously, current DEVS simulators present
various issues with regard to the results they output.
One important problem is that most of them do not
output the model structure. Consequently, it is very
complex to write a reusable visualisation engine since
there is no data structure to associate visual elements
(for example, SVG nodes) to simulation model com-
ponents. In addition, there is no contextual informa-
tion provided about the values output by models:
numbers alone convey little meaning to end users.
Another important issue is that simulation results are
output in a verbose format with needless redundancy.

In the CD++ excerpt presented in Figure 2 pre-
viously, each line is a single message, and we can see
that there is a considerable amount of unneeded data.
First, there are a series of messages that are not useful
for visualisation. In fact, only the messages beginning
with Message Y contain relevant data about the mes-
sages output by models. We can also see that there are
additional words such as Message and extra

whitespace that were added for human readability of
the log files. Each output message contains the desti-
nation of the message after to which is not required
since we can deduce the destination from the model
structure. There are other elements that are redun-
dant, such as model names, port names, and time
advance values. These can be eliminated in different
ways using a proper data structure as shown in the
next section. Cadmium messages can be similarly
reduced to their minimal expression required for
visualisation. In both cases, significant gains in file
size can be achieved, but the magnitude of the gains
depends on the models. For example, a model that
outputs many messages per period will show
a significant gain since time values will not be stored
for each message.

Description of the specification

The specification stores all the information required
to reconstruct a simulation trace and support the
user in interpreting the model. To achieve this, it is
important for it to preserve all the components of
a simulation model. This involves translating the
structural parts of a simulation model into an easy-
to-use data structure that can be conveniently
manipulated by an application. As discussed earlier,
typical simulator output formats focus on the mes-
sages exclusively and provide no information on the
structure of the model. There is no information
available to relate model components to one another.
With simulation outputs alone, it is nearly impossi-
ble to illustrate the path that a message travels within
the model, to reconstruct a message as intended by
the modeller or to provide contextual information
about a message emitter. We also attempt to retain
a certain level of simplicity and readability so that it
remains approachable by non-simulation expert soft-
ware developers. This is meant to facilitate the devel-
opment of simulation-based applications that are

Message I / 00:00:00:000 / Root(00) to top(01)
...
Message * / 00:00:00:000 / cpu(05) to npc(10)
Message Y / 00:00:00:000 / npc(10) / out2 / 1.000 to cpu(05)
Message D / 00:00:00:000 / npc(10) / 00:00:10:000 to cpu(05)
Message X / 00:00:00:000 / cpu(05) / in2 / 1.000 to pc_latch(11)
…

Figure 2. A fragment of a CD++ log file for a DEVS model.

00:02:40:000
[iestream_input_defs<Message_t>::out: {16 0}] generated by model
input_reader
00:02:43:000
[Subnet_defs::out: {16 0}] generated by model subnet1
...

Figure 3. A fragment of a Cadmium log file for a DEVS model.

6 B. ST-AUBIN AND G. A. WAINER

decoupled from simulators. The goal is to achieve
a balance between completeness and convenience so
that developers can appropriate the structure easily.

A conceptual data model of the specification is
shown in Figure 4. The data structure captures
a simulation which is composed of the structural ele-
ments of a simulation model and the messages that it
outputs over its execution. The simulation itself should
be associated with metadata. Although it is not used to
reconstruct the simulation, it serves to provide context
to the user. Metadata should contain information that
provides context to developers and end users. At the
time of writing, the metadata class is not well defined,
it should be the subject of additional research. In other
fields, GIS for example, metadata is usually the subject
of its own specification. As a placeholder while a more
comprehensive metadata definition is defined, we

consider a simple metadata object containing the
name of the simulation model, the name of the simu-
lator employed, the name of the formalism, and
a summary description of the model.

Structural elements of a model are stored in two
lists that compose the model structure: nodes and
links. Although the specification was initially designed
for DEVS, PDEVS, and other variants of DEVS, it can
also represent other graph-based formalisms. That is,
nodes and links can represent different concepts
depending on the formalism. In DEVS for example,
a node is used to represent a model, atomic or coupled,
while a link is a coupling between two ports (Figure 5,
left). In the case of a Petri Net, nodes would be places
or transitions while a link would be equivalent to an
arc between them (Figure 5, right). In typical Petri Net
models, ports are not necessarily named, but it is still
important to distinguish them since tokens travel by
specific arcs. Ports allow us to determine which arc
should be activated at a given time in the visualisation.

Regardless of the formalism, each node in the nodes
list must provide a unique id for identification pur-
poses and must be associated with a node definition
which indicates the type of node to use for that Node.
In a DEVS model for example, multiple models may
share the same model definition. These models will
share the same characteristics, they will have the same
ports, output the same message types, etc. In large
simulation scenarios, there can be many thousands
of instances using the same node definition. To avoid
repeating these common characteristics, node defini-
tions are captured once and associated to multiple

Figure 4. UML representation of the specification.

Figure 5. (a) In DEVS, a link connects two model ports and (b)
in Petri Nets, a link relates places and transition nodes.

JOURNAL OF SIMULATION 7

node instances. A node definition also stores a type
which varies according to the formalism employed.
In DEVS, a node definition type would be either atomic
or coupled. In Petri Nets, it would be either a place or
transition. Node definitions are also composed of a list
of port definitions, each with a type that can be input or
output. Both port definitions and node definitions are
instances of emitter definitions. Emitter definitions are
used to represent the structural elements through
which messages can be output. An emitter definition
contains a name used for labelling purposes and
a template used to reconstruct the messages that are
emitted by a node port or a node as will be explained
further in this section. In DEVS, for example,
a simulator can log messages that contain the state of
a model at a given time: these types of messages are
associated with nodes. It can also log messages that are
output by a model: these are associated to a model port
which is represented by the combination of a node and
a port definition from the node’s list of port definitions.

The second list contains link objects that store the
origin and destination ports. Since ports are associated
with nodes, storing a link requires storing a reference
to the node and a reference to a port definition that
exists in the port definitions associated to the node.

The specification also contains a list of frames
that represent each time step of a simulation trace.
Each frame contains a time step value which is
expressed as a string since time representation can
vary greatly according to formalisms, simulators,
and even simulation models. A frame also contains
one or more messages. An individual message can
be a node message in which case, the message will
be associated to a node element through the node
attribute. It can also be a port message in which
case, it will be associated to a port element through
the node and port attributes. This provides the
flexibility required to visualise a static message
related to a node (for example, a model that emits
its state in DEVS) or a message that travels through
a link from a port (for example, a model that out-
puts data towards another model in DEVS). This
also allows us to store both node and port messages
in the same list. Some simulators, such as
Cadmium, store these messages in different files
which requires the timeline of messages to be
reconstructed when they are read. Storing both
message types in the same list reduces the proces-
sing required by the application when reconstruct-
ing the simulation. Regardless of its type, each
message also has a data attribute which stores
a list of strings that must be templated to represent
the value of the message.

Many simulators use complex formats to log
their messages, regardless of whether they originate
from a node or a port. Adding to that complexity
is the fact that the structure of a message can vary

by model and by port of a model. The message
templating process in the specification provides
a way to reduce the repetitive and often verbose
messages output by simulators to the essential data
values they contain. This is another measure meant
to minimise the size of output files. At runtime, the
software reconstructs the full messages so that the
context required to interpret the message is not
lost for the end user. To achieve this, each message
emitter, node definition, or port definition, must
provide a distinct template to conserve and rebuild
the messages at runtime. Templates are strings that
contain template substitution sequences. The
sequences provide a simple mechanism to inject
the list of data values contained in a message into
the template. The templates and substitution pat-
terns can take any shape. They could be, for exam-
ple, fully formed sentences or serialised objects
using a syntax such as JSON or XML. An example
of message reconstruction is shown in the next
section where we present a potential implementa-
tion of the specification.

The specification presented contains the
required data to clearly implement three of the
four types of visualisation defined in Vernon-Bido
et al. (2015). A graph structure, such as the simu-
lation structure data model presented before, can
easily be displayed as a flowchart or other types of
conceptual model. As seen before, when processing
messages for visualisation, if it is associated to
a port, then it is possible to identify the corre-
sponding link through which it travels. It is there-
fore possible to visualise patterns and flows in the
execution trace. Quantitative visualisation is rela-
tively simple, it is a matter of extracting the rele-
vant data points from the messages to build an
analytical chart or graph. The specification does
not offer explicit support for the seek and find
capability but, as argued before, this is more
a matter of simulator implementation than specifi-
cation of simulator output artefacts.

In the context of DEVS simulations, if a simulator
output provides the required data, then this specifica-
tion unambiguously supports all five levels of visuali-
sation defined by Vangheluwe and Van Tendeloo
(Van Tendeloo & Vangheluwe, 2017). Messages are
associated with a model or a port therefore, it is
possible to show a triggered model and messages tra-
velling between models by identifying links associated
to ports. Since it is also possible to store the state of
a model in a message associated to a model node, it is
possible to display that state. Similarly, if the simulator
logs a message when a model triggers an internal or
external transition, it will be possible to display it.
Finally, by sequentially displaying all port messages
stored in the data structure, an animated sequence of
inter-model communication can be visualised.

8 B. ST-AUBIN AND G. A. WAINER

Considerations for the implementation of the
specification

The data structure presented in the previous section
provides the minimal information required to recon-
struct a visualisation of a simulation trace that fulfils the
different categories and levels of visualisation discussed
before. However, when implemented in a software
application, we need to consider various additional
issues, particularly when used in web-based applica-
tions. Web-based applications are convenient for
users: they are lightweight, do not require installation,
can run on any machine that has an internet connection
and access to a browser, etc. However, they also suffer
from many drawbacks: computing resources are limited
within a browser, memory is also limited, and transfer-
ring files over a network is generally a bottleneck for
such an application. These issues were considered when
the specification was defined.

The data model in Figure 4 contains a sub-
structure to hold structural elements, message emit-
ters and links, and another sub-structure to hold
messages organised by frames. We developed
a prototype implementation using JavaScript
Object Notation (JSON) to represent the former
and a CSV-like format for the latter. JSON provides
us with flexibility and readability which are useful
to represent the structure of a model at the cost of
more a verbose result. This is acceptable to repre-
sent the structure of the model since its size is
generally insignificant compared to the messages,

particularly when precaution is taken to avoid repe-
tition. To store messages, we considered other well-
known formats such as eXtensible Markup
Language (XML) or again, JSON. However, they
are verbose and, therefore, lead to large file sizes
that can be prohibitive for web consumption.
JSON, for example, requires field names to be
repeated for each entry. XML requires that opening
and closing tags be repeated for each entry.
Furthermore, both XML and JSON formats must
be entirely read before being processed. Reading in
“chunks” will lead to improperly formatted frag-
ments. Due to browser limitations and the volume
that messages can reach, a format that can be read
line by line is convenient, if not mandatory. Here is
an example of the specification implementation we
designed for the visualisation platform that will be
discussed in the following section (Figure 6). For
clarity’s sake, the example is abridged:

On the left-hand side, we find the metadata
object which contains the name of the model, the
simulator and formalism used, and a short descrip-
tion. We then find a list of node_definitions for
which the correspondence with the specification is
straightforward: each element has the attributes of
an emitter definition: name, type, and template as
well as a nested list of port definitions. Port defini-
tions are also emitter definitions and, therefore,
share the same attributes. The next component of
the implementation is a list of nodes where each
element has an id to identify the node as well as

{
"metadata": {

"model": "ABP",
"simulator": "CDpp",
"formalism": "DEVS",
"description": "A simple network protocol ..."

},
"node_definitions": [{

"name": "network",
"type": "coupled",
"template": null,
"port_definitions": [{

"name": "out1",
"type": "output",
"template": null

}, ...
]

}, ...
],
"nodes": [{

"id": "subnet1",
"node_definition": 0

}, {
"id": "subnet2",
"node_definition": 0

}, ...
],
"links": [[0, 2, 1, 0], [1, 1, 2, 0], ...]

}

00:00:20:000
1,1;11.00000
1,3;1.00000
00:00:22:987
4,1;11.00000
00:00:32:987
3,1;1.00000
00:00:50:000
1,1;11.00000
1,3;1.00000
00:00:51:957
4,1;11.00000
00:01:01:957
3,1;1.00000
00:01:04:992
5,1;1.00000
1,4;1.00000
00:01:14:992
1,1;20.00000
1,3;2.00000
00:01:17:174
4,1;20.00000
00:01:27:174
3,1;0.00000
00:01:44:992
1,1;20.00000
1,3;2.00000
00:01:48:841
4,1;20.00000

Figure 6. An implementation of the specification (abridged). On the left side, the structural elements, including message emitters
and links (JSON). On the right, a list of messages output by the models in the simulation (CSV derived).

JOURNAL OF SIMULATION 9

a node_definition attribute which contains an index
that indicates the position of the corresponding
node definition the node_definitions list. By storing
node definitions separately instead of nesting them
within each node, we avoid repetition. Finally, it
contains a list of links where each element is an
array of four indices. The first and second indices
indicate the origin port and the third and fourth
indicate the destination port. For each couple, the
first index indicates the position of the node in the
nodes list, while the second indicates the position
of the port definition in the port definitions list
associated to the node definition of the node. Links
are easy to reconstruct programmatically, and the
format requires minimal storage space.

On the right-hand side, we show an example of
messages. Here, lines with a single string contain
a new time step and consequently, identify the begin-
ning of a new frame. Each following message is
assigned to the same frame until another time step is
found. Figure 7 below explain how each message can
be associated to a node or a port and how the emitter
definition template can be used to reconstruct the
complete message:

Each individual message in a frame can be asso-
ciated to either a port or a node. The numbers on the
left-hand side of the semi-colon identify the emitter by
index. For a node message (state message in DEVS),
a single number will indicate the position of the node
in the nodes list. For a port message (output message
in DEVS) two numbers are necessary, one to represent
the position of the node, same as state messages, and
another to indicate the position of the port definition
in the port definitions list associated to the node type
of the node. This added complexity is necessary to
uniquely identify ports since port names are not
unique within a model: many node types can have
ports with the same name. This allows us to reference
ports and models without using string identifiers. This
significantly reduces the size of the resulting file since
these values are repeated many times across

a simulation output. Although this makes the log
files less human-readable, they remain easy to recon-
struct programmatically. In cases where the consum-
ing software requires a properly nested structure (e.g.,
port instances nested within models), it is trivial to
reassociate them.

(b) above represents a state message for the air-
plane_ 1 model (a). Knowing its state message tem-
plate, the list of data values contained in the message
can be injected into the corresponding template. The
implementation we propose relies on a serialised
JSON structure where each substitution sequence is
an integer that references the index of the data point in
the list of data values associated to each message. The
first step to reconstruct the message is to deserialize
the template into a JSON object. The resulting tree-
like object is then traversed, and each leaf is replaced
by the corresponding data value from the list of data
values a message contains as in (c). This is a simple
operation since each number indicates the position
index of the value in the list of data values. Once this
procedure is complete, the data message is restored. In
this case, we can see, for example, the latitude and
longitude positions of the airplane, its speed, and the
number of passengers it carries. The data, now
replaced in context, offer more comprehensive options
for visualisation and interaction. It can now be
explained to the end users rather than only presented
without context.

Case study: The specification in the DEVS
WebViewer

Using the specification, it is possible to build auto-
mated and generic visualisation tools. This section
introduces different case studies as examples of what
can be built using the specification and it shows how
to build visualisation solutions for simulation applica-
tions. First, the DEVS WebViewer visualisation plat-
form, presented in St-Aubin & Wainer (2019) and St-
Aubin et al. (2018), was used as a testbed for the

{
'name': 'airplane_1',
'type': 'atomic',
'template': '{"position": {"lat":0, "lon":1},"speed":2, "passengers":3}'
'port_definitions': [...]

}

(a)

(b) (c)

Figure 7. (a) A sample node definition, with template, (b) a single state message, and (c) message reconstructed from a template.

10 B. ST-AUBIN AND G. A. WAINER

specification and its implementation. It is
a lightweight, web-based software that allows users to
visualise, interact with, and analyse their simulation
results. Some of the work supported by the specifica-
tion and the visualisation platform is shown in
Figure 8. In the image on the left, we can see a model
to study the placement of CO2 sensors indoors. In this
visualisation, red cells indicate higher concentrations
of CO2, while blue cells indicate lower concentrations
of the gas. This model was built using a simulator
derived from CD++ (López & Wainer, 2004). In the
image on the right, we show a simulation of

urbanisation based on the logistic equation. Here,
teal cells represent urbanised areas, darker teal cells
represent areas undergoing urbanisation and other
coloured cells represent different spatial features
such as highways, rivers, or other points of interests.
This model was implemented using the CD++ simu-
lator. In both cases, the simulation outputs were con-
verted to the specification discussed before, then
visualised using the DEVS WebViewer. Generating
the results in the specification can be achieved in
different ways. The simulator can output in the speci-
fication directly or results can be converted from the

Figure 8. Visualizing simulations with the DEVS WebViewer. Left, a classroom CO2 simulation (Khalil et al., 2020) and right,
a logistic urban growth simulation (St-Aubin & Wainer, 2019).

Figure 9. Alternate bit protocol: DEVS model simulated using CD++ and visualized using the DEVS WebViewer.

Figure 10. Two visualizations of disease spread models. The indoors model on the left is an integration of our API and the
Autodesk Forge Viewer. The geospatial model on the right, an integration with the OpenLayers API.

JOURNAL OF SIMULATION 11

simulator format to the specification format. In our
case study, node types must also indicate the size of
grid space since these are cellular model simulations.
These details were omitted from the previous discus-
sion for clarity’s sake.

A modular API underlies the WebViewer applica-
tion. One of its modules is an object-oriented data
structure analogous to the specification that is used
to contain and manipulate the execution trace of the
simulation provided in the format specified before.
Other modules offer various components and user
interface elements that developers can use to build
their own visualisation platform. Reconstructing the
nested data structure and associating the messages to
structural elements are straightforward. The first step
is to parse the structure file, an operation natively
supported by modern browsers. Once read, recon-
struction of the object-oriented hierarchy can be
achieved as follows:

Messages contained in the messages file must be
read line by line where each line represents a single
frame in the simulation. Individual messages can be
associated with their corresponding structural element
following the procedure explained before.

With the data structure, reconstructed from the simu-
lation results provided following the specification, it is
possible to achieve the five levels of DEVS visualisation
identified by Van Tendeloo in Van Tendeloo &
Vangheluwe (2017) (triggered models, model’s state,
messages exchanged, internal and external transitions,
sequence of messages). The DEVS WebViewer, however,
focuses on animating the messages exchanged between
models. To achieve this, it relies on a vector-based repre-
sentation (SVG) of the simulation model where each
graphic element is associated to a structural element in
the data structure. The application then determines the
path travelled by output messages using the data struc-
ture and highlights it on screen by changing the colour of
corresponding the vector elements as shown below.

Figure 9 above is an example of a CD++ DEVS
model that represents a network where a sender
sends a packet that transits through a network, is
received by a receiver and an acknowledgement mes-
sage is sent back to the sender. At runtime, the viewer
uses the components of the specification to recon-
struct the simulation trace. With the emitter id asso-
ciated to each message of a given simulation frame, the
viewer can relate the message to the element that
emitted it, model ports in this case, and highlight the
element. Here, we can see that the sender model is
outputting a packet through its dataOut port going
towards the network model that receives it through its
in1 port then transfers it to its inner subnet1 model
through it in port. At the same time, the sender model
is outputting a package it received at a previous time
step through its packetSent port. The diagram compo-
nent that highlights the simulation trace and tooltip
popup bubble that allows users to explore output
messages in detail.

Other visualization platforms using the
specification

As explained before, one of the major advantages of
relying on a specification for simulation outputs is that
a single visualisation platform can be reused for multi-
ple simulators and formalisms. A corollary advantage
of this is that case-specific visualisation platforms can
be designed and developed quickly by reusing compo-
nents of the base visualisation platform. This requires
that the base platform from which components will be
reused be built following best practices of software
engineering. Components must be modular and as
loosely coupled as possible so that they can be taken
out of their context and brought into another one. The
API underlying the DEVS WebViewer is based on
elements of the modern web: it is modular and follows
a rigorous object-oriented approach. Therefore, it is
possible to reuse only parts of the API to build use
case-specific applications based on the specification.
Figure 10 shows an example of this:

FOR each node in the structure
instantiate a node object
find node type by index in the structure
assign the node type to the node

END FOR

FOR each link in the structure
instantiate a link object
find start and end nodes by index in the structure
find start and end ports by index in the port definitions of each node
assign nodes and port definitions to link
add the link to the start node’s list of links

END FOR

12 B. ST-AUBIN AND G. A. WAINER

The visualisation presented on the left is an
indoor disease spread model built using the
Cadmium Cell-DEVS simulator (ARSLab, 2023). It
uses a module of the API to load the simulation
data into the application and then uses the
Autodesk Forge Viewer to render a 3D scene of
the simulation trace. It also reuses a playback com-
ponent to animate the visualisation and allow the
user to step through all frames. Since the data
structure holding the simulation results is event-
enabled and the playback component handles
these events, including this functionality in a new
visualisation platform is trivial. Similarly, the exam-
ple on the right is an integration of these modules
with the OpenLayers API, a library to build web-
based geographic information systems. The result-
ing visualisation shows disease spread at the city
scale. Each polygon is a subdivision of space for
which we used census of population statistics to
build a simulation model. In this case, the simula-
tion is run with another version of Cadmium Cell-
DEVS which supports Irregular neighbourhoods
and cell shapes.

Conclusion

In this paper, we discussed issues related to
domain-specific visualisation for simulation with
a specific emphasis on DEVS-based simulation.
Users generally cannot reuse visualisation plat-
forms across simulators and in different applica-
tion scenarios. In most cases, they will build ad
hoc visualisations to suit their needs. This is an
obstacle to transparency in simulation, one of the
better-known pitfalls of simulation. To address
this issue, we propose to decouple visualisation
from simulation models, simulators, and even
simulation formalisms when possible. This can be
achieved by establishing a specification for simu-
lation results. We presented one such specification
and an implementation that was successfully inte-
grated to the DEVS WebViewer to visualise results
from three DEVS simulators (CD++, Cadmium,
and ADEVS) and a Petri Net Tool (Colored Petri
Net Tools).

Through this platform and the specification that
supports it, the advantages of a common result speci-
fication were made clear. Users can quickly and with-
out effort generate visualisations for their models,
regardless of which simulator they were using. This
allows users to immediately debug models, to share
results among researchers, to communicate results
externally, to introduce newcomers to the theory of
DEVS, to compare models reimplemented from other
simulators, etc. In accordance with advantages dis-
cussed in the previous section, this contributes to

faster model development cycles, increased collabora-
tion, and higher visibility for the work accomplished.

The work accomplished demonstrates that such
a specification does not have to be overly complex or
elaborate, as long as it properly fulfils visualisation
needs. In fact, the clearer and simpler it is, the more
likely it is to be adopted and used by the community.
However, more important than the specification and
the implementation we presented is the argument
itself that visualisation and simulation should, in fact,
be decoupled. Indeed, providing better tools for model
developers, simulation software developers, and con-
sumers of simulation products is a major step towards
democratisation of the field. A once developed, always
ready to use visualisation platform could have radical
impact on the simulation lifecycle. Modellers would
avoid spending effort and resources on developing
their own simulation visualisations. They could use
common platforms to analyse, debug, compare,
demonstrate, and share them with others. This
would speed up the simulation development cycle
and allow modellers to focus on modelling rather
than the development of tools. This is particularly
relevant in an academic context where resources are
often limited. Any tool that supports the specification
could be easily reused by modeller. A rich ecosystem
of robust visualisation tools would emerge gradually
and be at the disposal of the community.

The research presented is currently being inte-
grated into a wider environment meant to manage
the complete simulation lifecycle. As such, it will
play a major role in the automated integration of
simulation results into a decision-making platform.
With regard to visualisation decoupled from simula-
tion, there are still various aspects left to explore. More
efforts should be spent to verify how the specification
can be made to support an even wider range of form-
alisms, for example, system dynamics, business pro-
cess modelling, finite state machines, etc. We
specifically plan on better integrating cellular auto-
mata-based models into the specification. Although
we have made efforts to minimise the storage required
for output files that follow the specification and anec-
dotal evidence shows that it reduces the size drasti-
cally, more experimentation would be required to
quantitatively evaluate the gains more clearly. This
could also be an occasion to measure the impact on
the processing time required to reconstruct simulation
traces at runtime.

Acknowledgments

The authors would like to acknowledge Compute Canada
for providing access to their Arbutus cloud-based infra-
structure that allowed us to develop and test an implemen-
tation of the work we presented. The research was partially
funded by NSERC.

JOURNAL OF SIMULATION 13

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

This work was supported by the NSERC - Canada.

References

Al-Habashna, A., & Wainer, G. A. (2016). Modeling pedes-
trian behavior with cell-DEVS: Theory and applications.
Simulation, 92(2), 117–139. https://doi.org/10.1177/
0037549715624146

Arslab (Advanced real-time simulation laboratory). (2023).
SimulationEverywhere, BIM-to-DEVS GitHub
repository. https://github.com/SimulationEverywhere/
BIM-to-DEVS

Banks, J., & Chwif, L. (2011). Warnings about simulation.
Journal of Simulation, 5(4), 279–291. https://doi.org/10.
1057/jos.2010.24

Belloli, L., Vicino, D., Ruiz-Martin, C., & Wainer, G. A.
(2019). Building devs models with the Cadmium tool.
In Proceedings - Winter Simulation Conference
(pp.45–59). National Harbor, Maryland: IEEE.

Ben-Tovim, D., Filar, J., Hakendorf, P., Qin, S.,
Thompson, C., & Ward, D. (2016). Hospital event simu-
lation model: Arrivals to discharge–design, development
and application. Simulation Modelling Practice and
Theory, 68, 80–94. https://doi.org/10.1016/j.simpat.2016.
07.004

Blindheim, S., & Johansen, T. A. (2022). Electronic naviga-
tional charts for visualization, simulation, and autono-
mous ship control. IEEE Access, 10, 3716–3737. https://
doi.org/10.1109/ACCESS.2021.3139767

Chen, Y., Liang, X., Hong, T., & Luo, X. (2017). Simulation
and visualization of energy-related occupant behavior in
office buildings. Building Simulation, 10(6), 785–798.
https://doi.org/10.1007/s12273-017-0355-2

Collins, A. J., Ball, D. K., & Romberger, J. (2015).
A discussion on simulations’ visualization usage. 2015
Winter Simulation Conference (WSC). (pp.2827–2835).
Huntington Beach, California: IEEE.

Collins, A. J., Ball, D. K., & Romberger, J. (2015). Simulation
visualization issues for users and customers. Simulation
Series, 47(2), 17–24.

Dufour-Kowalski, S., Courbaud, B., Dreyfus, P.,
Meredieu, C., & de Coligny, F. (2012). CAPSIS: An
open software framework and community for forest
growth modelling. Annals of Forest Science, 69(2),
221–233. https://doi.org/10.1007/s13595-011-0140-9

Eriksson, H., Magnusson, H., Fritzson, P., & Pop, A. (2008).
3D animation and programmable 2D graphics for visua-
lization of simulations in OpenModelica. 49th
Scandinavian Conference on Simulation and Modeling
(SIMS’2008) (pp. 184–195). Oslo, Norway.

Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S.,
Kruse, M., Blunk, D., Garza, L., Packschies, L.,
Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T.,
Schuller, B., Müller-Pfefferkorn, R., Jäkel, R.,
Nagel, W. E., Atkinson, M., & Krüger, J. (2014).
Standards-based metadata management for molecular
simulations. Concurrency & Computation: Practice &

Experience, 26(10), 1744–1759. https://doi.org/10.1002/
cpe.3116

Hamza, N., & DeWilde, P. (2014). Building simulation
visualization for the boardroom: An exploratory study.
Journal of Building Performance Simulation, 7(1), 52–67.
https://doi.org/10.1080/19401493.2013.767377

Han, S. H., Al-Hussein, M., Al-Jibouri, S., & Yu, H. (2012).
Automated post-simulation visualization of modular
building production assembly line. Automation in
Construction, 21(1), 229–236. https://doi.org/10.1016/j.
autcon.2011.06.007

Hao, J., Smith, L., Mislevy, R., von Davier, A., & Bauer, M.
(2016). Taming log files from game/Simulation-based
assessments: Data models and data analysis tools. ETS
Research Report Series, 2016(1), 1–17. https://doi.org/10.
1002/ets2.12096

Höger, C., Mehlhase, A., Nytsch-Geusen, C., Isakovic, K., &
Kubiak, R. (2012) Modelica3D - Platform independent
simulation visualization. Proceedings of the 9th
International MODELICA Conference, 3-5, Munich,
Germany, 76 (August 2015): 485–494

Hurrion, R. D. (1978). An investigation of visual interactive
simulation methods using the job-shop scheduling
problem. The Journal of the Operational Research
Society, 29(11), 1085. https://doi.org/10.1057/jors.1978.
240

Khalil, H., Wainer, G. A., & Dunnigan, Z. (2020) Cell-DEVS
models for CO2 sensors locations in closed spaces. In
Proceedings of the 2020 Winter Simulation Conference
(pp. 12). Orlando Florida.

Knowles Ball, D., & Collins, A. J. (2012) Simulation visuali-
zation rhetoric and its practical implications. 48th Annual
Meeting of Southeastern Chapter of INFORMS. Myrtle
Beach, SC, pp.584–591

Kuljis, J., Paul, R. J., & Chen, C. (2001). Visualization and
simulation: Two sides of the same coin? Simulation, 77
(3–4), 141–152. https://doi.org/10.1177/
003754970107700306

Li, S., Marsaglia, N., Garth, C., Woodring, J., Clyne, J., &
Childs, H. (2018). Data reduction techniques for simula-
tion, visualization and data analysis. Computer Graphics
Forum, 37(6), 422–447. https://doi.org/10.1111/cgf.13336

López, A., & Wainer, G. A. (2004). Improved cell-DEVS
model definition in CD++. 6th International
Conference on Cellular Automata for Research and
Industry (ACRI 2004) (pp. 803–812). Amsterdam, The
Netherlands. https://doi.org/10.1007/978-3-540-30479-
1_83

Modelica Association. (2019). Modelica tools. https://www.
modelica.org/tools/index_html#commercial-modelica-
simulation .

Nutaro, J. J. (2023). Adevs: A discrete EVent System
simulator. https://web.ornl.gov/~nutarojj/adevs/

Roman, P. A. (2005) Garbage in, Hollywood out.
Proceedings SimtecT (pp. 2–6). Sydney, Australia.

Sand, A., Kniivilä, J., Toivakka, M., & Hjelt, T. (2011).
Structure formation mechanisms in consolidating pig-
ment coatings—simulation and visualisation. Chemical
Engineering and Processing: Process Intensification, 50
(5–6), 574–582. https://doi.org/10.1016/j.cep.2010.09.006

Sarjoughian, H. S., & Zeigler, B. P. (1998) DEVSJAVA: Basis
for a DEVS-based collaborative M&S environment. SCS
International Conference on Web-Based Modeling and
Simulation (pp. 7) San Diego, CA, USA.

Shao, Y., Liu, Y., & Li, C. (2015). Intermediate model based
efficient and integrated multidisciplinary simulation data
visualization for simulation information reuse. Advances

14 B. ST-AUBIN AND G. A. WAINER

https://doi.org/10.1177/0037549715624146
https://doi.org/10.1177/0037549715624146
https://github.com/SimulationEverywhere/BIM-to-DEVS
https://github.com/SimulationEverywhere/BIM-to-DEVS
https://doi.org/10.1057/jos.2010.24
https://doi.org/10.1057/jos.2010.24
https://doi.org/10.1016/j.simpat.2016.07.004
https://doi.org/10.1016/j.simpat.2016.07.004
https://doi.org/10.1109/ACCESS.2021.3139767
https://doi.org/10.1109/ACCESS.2021.3139767
https://doi.org/10.1007/s12273-017-0355-2
https://doi.org/10.1007/s12273-017-0355-2
https://doi.org/10.1007/s13595-011-0140-9
https://doi.org/10.1002/cpe.3116
https://doi.org/10.1002/cpe.3116
https://doi.org/10.1080/19401493.2013.767377
https://doi.org/10.1080/19401493.2013.767377
https://doi.org/10.1016/j.autcon.2011.06.007
https://doi.org/10.1016/j.autcon.2011.06.007
https://doi.org/10.1002/ets2.12096
https://doi.org/10.1002/ets2.12096
https://doi.org/10.1057/jors.1978.240
https://doi.org/10.1057/jors.1978.240
https://doi.org/10.1177/003754970107700306
https://doi.org/10.1177/003754970107700306
https://doi.org/10.1111/cgf.13336
https://doi.org/10.1007/978-3-540-30479-1_83
https://doi.org/10.1007/978-3-540-30479-1_83
https://www.modelica.org/tools/index_html#commercial-modelica-simulation
https://www.modelica.org/tools/index_html#commercial-modelica-simulation
https://www.modelica.org/tools/index_html#commercial-modelica-simulation
https://web.ornl.gov/~nutarojj/adevs/
https://doi.org/10.1016/j.cep.2010.09.006

in Engineering Software, 90, 138–151. https://doi.org/10.
1016/j.advengsoft.2015.08.002

St-Aubin, B., Hesham, O., & Wainer, G. A. (2018). A
cell-DEVS visualization and analysis platform.
SummerSim-SCSC 2018 (pp. 157–168). Bordeaux,
France.

St-Aubin, B., Loor, F., & Wainer, G. A. (2023). A survey of
visualization capability for simulation environments.
2023 Annual Modeling and Simulation Conference
(ANNSIM) (pp. 13–24). Hamilton, ON, Canada.

St-Aubin, B. & Wainer, G. A. (2019). A cell-DEVS model for
logistic urban growth. SpringSim-ANSS: Tucson, AZ,
USA.

Stukowski, A. (2010). Visualization and analysis of atomistic
simulation data with OVITO–the open visualization tool.
Modelling and Simulation in Materials Science and
Engineering, 18(1), 015012. https://doi.org/10.1088/
0965-0393/18/1/015012

Taylor, S. J. E., Balci, O., Cai, W., Loper, M. L., Nicol, D. M.,
& Riley, G. F. (2013) Grand challenges in modeling and
simulation. In Proceedings of the 2013 ACM SIGSIM con-
ference on Principles of advanced discrete simulation -
SIGSIM-PADS ’13 (pp. 403). ACM Press.

Taylor, S. J. E., Khan, A., Morse, K. L., Tolk, A., Yilmaz, L., &
Zander, J. (2013) Grand challenges on the theory of mod-
eling and simulation. In Proceedings of the Symposium on
Theory of Modeling & Simulation. (pp. 1–8). San Diego,
California.

Taylor, S. J. E., Khan, A., Morse, K. L., Tolk, A., Yilmaz, L.,
Zander, J., & Mosterman, P. J. (2015). Grand challenges
for modeling and simulation: Simulation everywhere—
from cyberinfrastructure to clouds to citizens.

Simulation, 91(7), 648–665. https://doi.org/10.1177/
0037549715590594

Van Schyndel, M., Hesham, O., Wainer, G. A., & Malleck, B.
(2016) Crowd modeling in the sun life building.
Proceedings of SimAUD 2016. London, UK.

Van Tendeloo, Y., & Vangheluwe, H. L. (2017). An evalua-
tion of DEVS simulation tools. Simulation, 93(2),
103–121. https://doi.org/10.1177/0037549716678330

Vernon-Bido, D., Collins, A. J., & Sokolowski, J. A. (2015).
Effective visualization in modeling and simulation. 48th
Annual Simulation Symposium (ANSS '15) (pp. 33–40).
San Diego, CA, US.

Wainer, G. A. (2002). CD++: A toolkit to develop DEVS
models. Software: Practice & Experience, 32(13),
1261–1306. https://doi.org/10.1002/spe.482

Westergaard, M., & Verbeek, H. M. W. (2018) CPN tools –
a tool for editing, simulating, and analyzing colored Petri
nets. http://cpntools.org/

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of
modeling and simulation (2nd ed.). Elsevier.

Zhao, M., Yao, X., Sun, J., Zhang, S., & Bai, J. (2019). GIS-
Based simulation methodology for evaluating ship
encounters probability to improve maritime traffic
safety. IEEE Transactions on Intelligent Transportation
Systems, 20(1), 323–337. https://doi.org/10.1109/TITS.
2018.2812601

Zoellner, C., Al-Mamun, M. A., Grohn, Y., Jackson, P.,
Worobo, R., & Schaffner, D. W. (2018). Postharvest supply
chain with microbial travelers: A farm-to-retail microbial
simulation and visualization framework D. W. Schaffner
ed. Applied & Environmental Microbiology, 84(17), 1–13.
https://doi.org/10.1128/AEM.00813-18

JOURNAL OF SIMULATION 15

https://doi.org/10.1016/j.advengsoft.2015.08.002
https://doi.org/10.1016/j.advengsoft.2015.08.002
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1177/0037549715590594
https://doi.org/10.1177/0037549715590594
https://doi.org/10.1177/0037549716678330
https://doi.org/10.1002/spe.482
http://cpntools.org/
https://doi.org/10.1109/TITS.2018.2812601
https://doi.org/10.1109/TITS.2018.2812601
https://doi.org/10.1128/AEM.00813-18
https://doi.org/10.1128/AEM.00813-18

	Abstract
	Introduction
	Background
	Visualization and analysis in simulation
	Pitfalls of visualization and analysis for simulation
	The DEVS formalism

	Supporting web-based visualisation of DEVS simulation
	Description of the specification
	Considerations for the implementation of the specification

	Case study: The specification in the DEVS WebViewer
	Other visualization platforms using the specification

	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	References

